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NEWS AND VIEWS

Making light-spots travel further

Careful shaping of the profile of a light beam makes it possible to increase greatly the distance over
which the peak intensity is not degraded by diffraction.

On the face of things. as schoolboys know.
itis a kind of nonsense to think that it may
be possible to arrange for a beam of light
whose physical dimensions are finite to
propagate through space without becom-
ing broader and more diffuse because of
diffraction. The usual and simplest expla-
nation is based on Huygens's principle:
each point on the instantaneous wave-
front of a propagating beam can be
thought of as the source of an outwardly
propagating shell of radiation. For radia-
tion propagating outwards from a point
source. the wavefronts are spherical. and
a sequence of ever-larger spherical wave-
fronts is obtained by the mutual interfer-
ence of the hypothetical spherical wave-
lets travelling outwards from neighbour-
ing points on each spherical surface. In the
days when the lumeniferous aether was all
the rage. this simple picture was one way
of relating the supposed elastic properties
of the aether to such quantities as the
velocity of light and the electrodynamic
constants of the vacuum. The same result
obtains for plane waves travelling in one
direction which are infinite in extent in the
planes perpendicular to the direction of
travel. All thatis elementary. Equally. itis
readily imagined that a plane wave which
is not infinite in its lateral extent cannot
travel without spreading. The Huygens
wavelets near the middle of each wave
front may interfere destructively except
along another plane surface displaced
slightly downstream, but the Huygens
wavelets spreading from near the edges of
the wavefront will not be neatly cancelled
out by their neighbours except along the
surface of the displaced plane, so that the
travelling beam becomes fuzzy at the
edges.

Of necessity, the spreading-out obtains
simply as a consequence of the finite size
of the propagating beam, and occurs even
in a vacuum. The distance over which a
beam of circular cross-section r will re-
main reasonably compact is measured by
its cross-sectional area divided by the
wavelength (which is why those who
would use lasers in defences against bal-
listic missiles must think of building in-
struments with very large cross-section).

But now, it seems, there is a way round
the problem. J. Durnin of the Institute of
Optics at the University of Rochester has
apparently managed to find a solution of
the wave equation which represents a
beam of light of finite cross-section which

is immune from this diffraction phenome-
non. Moreover, Durnin and two col-
leagues at the same university, J.J. Miceli

and J.H. Eberly, have been able to con- |

struct in the laboratory a realization of
Durnin’s wave (Phys. Rev. Lett. 58, 1499;
1987). Maddeningly, Durnin’s account of
his discovery, which will no doubt event-
ually explain how he came by his solution,
is cited as “in the press with J. Opt. Soc.
Am.” (Physicists — and physics journals —
are becoming terribly cavalier in this
respect, chiefly under the influence of
their huge trade in preprints. It seems
nowadays quite common that articles
based on pre-prints appear in print before
the originals that inspired them. It is more
unusual that an experiment to confirm the
correctness of a theory should appear in
advance of the explanation. But either
way, the practice is confusing.)

Not unexpectedly, the beam is really
rather special. The intensity is far from
uniform across the cross-section of the
beam but, rather, consists of a relatively
intense central spot surrounded by an
infinite series of annular rings of light
whose intensity is inversely proportional
to their radius (measured from the central
spot). The fact that this description may
be reminiscent of the diffraction plates by
means of which the high-definition
Schmidt sky-cameras are constructed is
far from coincidental; in both cases, the
trick is a solution of the wave equation
which, in cylindrical coordinates, rep-
resents a beam travelling along the axial
direction z; the solution of interest is then
the product of an oscillatory function of z
and the Bessel function of the first kind of
zeroth order, known in the trade as J (ar),
where g is a constant and r is the off-axis
distance.

The most striking feature of this beam
profile is that it represents a sharp central
peak surrounded by a sequence of oscilla-
tions which tail off to zero inversely with
the distance. The half-width of the central
spot is inversely proportional to the con-
stant a. It simply requires a little differen-
tiation to show that the function is indeed
a solution of the wave equation. But the
fact that the oscillatory function of z is
multiplied in the solution by a function of
the radius only shows that the profile of
the beam is literally unchanged on prop-
agation, at least so long as the space in
which the wave is travelling is for practical
purposes infinite.

How to realize this state of affairs in the
laboratory? What Durdin and his col-
leagues have done is to place an annular
slit illuminated by well-collimated light in
the focal plane of a lens of comparable
dimensions. The slit must not be so nar-
row as to cause diffraction effects on its
own account nor so wide as to confuse the
lens. The output from the lens is a conical
band of light. Direct measurement shows
that the on-axis beam will propagate for
roughly 1 m (under the conditions of the
experiment) without substantial degrada-
tion of the central spot (whereafter it
quickly falls to zero). Direct measurement
has shown that a comparable spot-like
beam with a gaussian profile decreases in
intensity by an order of magnitude in a few
centimetres.

The immediate application of this de-
velopment is in those circumstances in
which it is sought to make laser beams
travel vast distances with undiminished in-
tensity. It is worth noting that a perfectly
collimated wave from a 2-cm diameter las-
er will have lost much of its central intensi-
ty after travelling for 1 km in a vacuum.
Because the distance increases with the
square of the radius, the modestly larger
instruments have markedly better per-
formance, but if it is in practice possible to
enhance the distance over which the cen-
tral intensity is not degraded by some-
thing like a factor of 100 by an appropriate
shaping of the beam, many now impracti-
cal tasks will be possible (or present jobs
can be done with smaller instruments).
Curiously enough, there is no reference to
the Strategic Defense Initiative among the
references.

One curious problem remains. One of
the other lessons learned at school is that
the diffraction of a beam of finite cross-
section is not merely an annoying con-
sequence of Huygens’ principle but a con-
sequence of Heisenberg’s uncertainty
principle. But Durnin and his colleagues
appear to have improved on that by a
factor of a hundred or thereabouts. What
can be the explanation? The authors pro-
vide the answer off their own bat: the
explanation is that, although the central
and practically important feature of the
Bessel beam is its narrow central spot, the
outlying annular rings of light intensity
imply that the beam is, for practical pur-
poses, infinite in its lateral dimensions.
Both Huygens and Heisenberg survive.
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